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Abstract. Permafrost thaw disrupts ecosystems, hydrology, and biogeochemical cycles, reinforcing climate change through a 13 

positive permafrost-carbon feedback loop. Thaw can be gradual, deepening the active layer, or abrupt, triggering thermokarst, 14 

thermo-erosion, or thermodenudation. Retrogressive thaw slumps (RTSs) are a key manifestation of abrupt permafrost thaw. 15 

Yet, their distribution, scale, and environmental controls in the West Siberian Arctic remain poorly understood, further 16 

complicated by their rapid evolution. This study presents an extensive update of the West Siberian RTS inventory through 17 

manual mapping using high-resolution, multi-source, multi-year recent (2016-2023) satellite basemaps (ESRI, Google Earth, 18 

and Yandex Maps). We developed an RTS classification capturing key environmental parameters, including morphology, 19 

spatial organization, terrain position, and associated relief-forming concurrent processes. The dataset comprises 6168 classified 20 

RTS landforms, integrating newly mapped sites with previously reported occurrences to provide a comprehensive view of a 21 

445226 km2 region covering the Yamal, Gydan, and Tazovsky peninsulas. The collected data underwent manual filtering and 22 

verification, leveraging local field experience and observations from key sites to reduce uncertainty and minimize false 23 

positives. Accuracy analysis, performed by comparing the dataset with various field datasets collected across the peninsulas, 24 

confirmed high accuracy (>90%) for RTS identification. The dataset likely underestimated the distribution of small RTSs due 25 

to the resolution limitations of remote sensing data, hence generally providing a conservative estimate. This dataset serves as 26 

a valuable resource for diverse research fields, including ecology, biogeochemistry, geomorphology, climatology, permafrost 27 

science, and natural hazard assessment. Additionally, it provides a crucial reference dataset for machine learning applications, 28 

enhancing upcoming remote sensing classification and predictive modeling approaches.  29 
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1 Introduction 30 

Permafrost is any ground that stays below 0°C for two or more consecutive years (Harris et al., 1988). It constitutes about 15% 31 

of the Northern Hemisphere landmass (Obu et al., 2021) and is experiencing significant warming and reduction in extent due 32 

to global warming (AMAP, 2017; Biskaborn et al., 2019; Smith et al., 2022). Permafrost thaw not only affects the high-latitude 33 

northern ecosystems and hydrological cycle but also releases carbon into the atmosphere and hydrosphere, contributing to 34 

global climate change with a positive feedback loop (Schuur et al., 2015). However, permafrost carbon emissions are still 35 

poorly integrated into global climate models (Miner et al., 2022). Furthermore, permafrost degradation manifests itself both 36 

gradually and abruptly. Gradual thaw slowly deepens the active layer over time (Brown et al., 2000; Luo et al., 2016; Vasiliev 37 

et al., 2020), while abrupt thaw in ice-rich permafrost triggers rapid thermokarst or thermo-erosion processes, leading to the 38 

formation of various landforms. Prime examples of such abrupt thaw events are specific types of permafrost-region landslides 39 

termed retrogressive thaw slumps (RTSs) (Nesterova et al., 2024).  40 

RTSs are slope failures formed due to the thaw of exposed ice-rich permafrost (Fig. 1) (Mackay, 1966). These dynamic features 41 

can develop in a polycyclic fashion (Lantuit et al., 2005). Usually, the initial stages involve active ice ablation and downslope 42 

mudflows, followed by a stage of stabilization and colonization with pioneer vegetation (Mackay, 1966; Kerfoot, 1969; 43 

Leibman and Kizyakov, 2007). Active RTS can be considered as one of the clear indicators of permafrost response to increased 44 

air temperatures and higher summer precipitation. RTS occurrence significantly impacts the environment by altering the 45 

vegetation, topography, hydrology, as well as carbon fluxes (Lantz et al., 2009; Thienpoint et al., 2013; Cassidy et al., 2017). 46 

The prediction of RTS occurrence and activity is challenging due to heterogeneous ground ice distribution (Pollard and French, 47 

1980) across the Arctic, limited observational field data (Jones et al., 2019), and the lack of models capable of simulating RTS 48 

initiation and dynamics.  49 

The West Siberian Arctic with its continuous permafrost distribution is characterized by a high abundance of RTS. The 50 

prevalence of massive ground ice (Baulin et al., 1967; Streletskaya et al., 2013; Leibman and Kizyakov, 2007; Badu, 2015) 51 

that often occurs close to the surface contributes to the widespread abundance of RTSs (Khomutov et al., 2017). So far, the 52 

majority of RTS studies in the north of West Siberia have only been based on fieldwork at local key sites (Leibman and 53 

Kizyakov, 2007; Leibman et al., 2015; Khomutov et al., 2017; Novikova et al., 2018; Streletskaya et al., 2018; Babkina et al., 54 

2019). Long-term field observations at the research station “Vaskiny Dachi” in Central Yamal reported the activation of rapid 55 

thaw processes after the extreme summer warmth of 2012 (Khomutov et al., 2017; Babkina et al., 2019).  56 
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 57 

Figure 1 RTS in Central Yamal, West Siberia, Russia. Photo taken in August 2021 by Nina Nesterova. 58 

The vast majority of novel large-scale RTS studies utilize automated mapping with remote sensing data. This automated 59 

approach has some limitations for West Siberia so far, including using only a moderate spatial resolution of 30m not sufficient 60 

for detecting smaller RTS, only a partial cover of the West Siberian Arctic, the lack of high-resolution ground truth data, a 61 

large amount of false positive detection, and further feature interpretation ambiguities (Nitze et al., 2018; Runge et al., 2022; 62 

Nitze et al., 2024). Furthermore, the polycyclicity of RTS development results in highly complex spatial patterns characterized 63 

by multiple overlapping or nested RTSs (Nesterova et al., 2024), which introduces further difficulties in highly automated 64 

mapping efforts. New cutting-edge panarctic datasets building on automated detection methods are being released (DARTS, 65 

Nitzeal., 2024b) but still have some limitations in accuracy on the local to regional scale. 66 

In contrast, manual mapping of RTSs with high-resolution imagery by experts with regional knowledge can provide higher 67 

accuracy and decrease the amount of false positive detections (Lewkowicz and Way, 2019; Ward Jones et al., 2019; Nitze et 68 

al., 2024). A first manually mapped inventory of RTSs in the West Siberian Arctic was performed using the Yandex Maps 69 

high to moderate resolution satellite basemap representing the 2016-2018 period (Nesterova et al., 2021). The dataset reports 70 

439 RTSs over both the Yamal and Gydan peninsulas. Due to the different spatial resolutions of satellite images used in the 71 

basemap (ranging from 0.4 to 15 m), the results tend to underestimate modern RTS distribution, particularly in areas where 72 
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only lower resolution imagery was available. Therefore, there was still no full understanding of the scale of thaw slumping in 73 

the West Siberian Arctic, its distribution, and environmental parameters, which are further complicated by the rapid evolution 74 

of RTSs. 75 

We here provide an extensive update of the West Siberian RTS inventory, by performing manual RTS mapping in the north 76 

of West Siberia using multi-source and multi-year satellite basemaps (high-resolution ESRI, Google Earth, and Yandex Maps 77 

satellite basemaps). We further added all the RTS locations reported for this region in the literature so far. The collected dataset 78 

was manually filtered and compared to field data. This multi-source approach, in combination with regional field experience 79 

and field observations, gathered earlier at various key sites, helped us to minimize the uncertainty and decrease the number of 80 

false positive detections. We additionally developed a classification to describe each RTS, capturing their main environmental 81 

parameters such as morphology, spatial organization, terrain position, and concurrent relief-forming processes. 82 

2 Methodology 83 

Our approach includes four main steps: (1) visual identification of RTS and manual RTS point collection, (2) classification 84 

and parameter attribution, (3) iterative correction loop, and (4) final accuracy assessment (Fig. 2). Manual RTS point collection, 85 

classification, and correction were performed in QGIS software version 3.14. Accuracy analysis, plotting, and statistical 86 

calculations were performed using Python version 3.12.7. 87 

 88 

Figure 2 Workflow overview. Rectangles with rounded corners present the datasets, and rectangles with sharp corners present the 89 
curation steps. The four main stages are numbered: 1 – Visual RTS identification and manual point collection stage, 2 – RTS point 90 
classification and parameter attribution, 3 – Iterative correction, and 4 – Accuracy assessment. 91 
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2.1 RTS point mapping 92 

The study area in the north of West Siberia is 445 226 km2 and includes the Yamal, Gydan, and Tazovsky peninsulas (Fig. 3). 93 

To ensure the completeness of the RTS dataset we reviewed previously published RTS datasets for the region, all of which 94 

were mapped using automated methods (Fig. 3). We manually filtered RTS datasets from Nitze et al. (2018), Runge et al. 95 

(2022), Bernhard et al. (2022), Huang et al. (2023), and Nitze et al. (2024b) to verify the presence of RTS and ensure that only 96 

true positives were included. This verification was conducted using the same available datasets that we later used for manual 97 

point collection, as described further below. 98 

 99 

Figure 3 Study area in West Siberia with RTS datasets previously published in the literature. ESRI basemap has the following 100 
credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 101 
User Community. Please note, that none of the external datasets fully covers the entire study area. 102 

https://doi.org/10.5194/essd-2025-164
Preprint. Discussion started: 15 May 2025
c© Author(s) 2025. CC BY 4.0 License.



6 

 

For our visual identification and manual collection of RTS points, we created a regular grid of 3.9 * 3.9 km cells covering the 103 

entire study area (Fig. 4a). This cell size was chosen as the optimal for visual inspection of the area and progress tracking. The 104 

ESRI satellite basemap was used as the primary source of information for RTS point collection due to the best quality of its 105 

recent very high-resolution imagery. This included high-resolution imagery (up to 0.31 m) largely with low cloudiness and an 106 

almost complete absence of visual artifacts. In rare cases, when the ESRI basemap did not fulfill visual quality criteria, such 107 

as no clouds, summer time of the image acquisition, and no artifacts, we used the Yandex Maps satellite basemap instead. In 108 

exceptional cases when neither the ESRI nor the Yandex basemaps fulfilled the visual quality criteria, we additionally checked 109 

the Google satellite basemap. 110 

 111 

Figure 4 Manual mapping of RTSs in West Siberia:  (a) Example of a grid cell with manually mapped RTSs (orange dots); (b) 112 
Coverage of the study area by high-resolution satellite images from different years in the ESRI basemap in km2; (c) Example of a 113 
lake shore RTS (marked by yellow point) on ESRI basemap imagery and typical visual RTS indicators: 1 – headwall, 2 – mudflow, 114 
3 - contrasting colors of the disturbed slump floor with bare ground and the surrounding intact tundra vegetation; (d) Example of 115 
coastal RTS (marked by yellow point) on ESRI basemap imagery affected by coastal thermo-erosion, with white bracket indicating 116 
the full elongated extent of the coastal landform considered to be a single RTS in our inventory dataset. ESRI basemap used in (a), 117 
(c), and (d) has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, 118 
IGP, swisstopo, and the GIS User Community. 119 

The majority of the high-resolution satellite images used in the ESRI basemap mosaic are recent Maxar images obtained after 120 

2015 (Fig. 4b). Over a third of the study area is covered by satellite images from 2023 (Fig. 4b). Since the ESRI basemap was 121 

utilized as the primary source, all metadata related to the satellite images in the mosaic for identifying the RTS is stored within 122 

the inventory dataset's metadata. Yandex Maps basemap presents a mosaic of various satellite imagery taken in 2016-2018 123 
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with spatial resolutions ranging from 0.4 up to 15 m. The majority of images are dated July 2017 (Nesterova et al., 2021). For 124 

the Google satellite image layer, no individual image metadata was provided. 125 

RTSs were identified at a 1:1000 mapping scale in the satellite imagery based on visual indicators such as a clear outline of 126 

the headwall, the presence of a mudflow, and the sharp contrast in colors between the disturbed slump floor with bare ground 127 

and the adjacent intact tundra vegetation (Fig.4c). Thus, stabilized RTSs were also identified when the indicators were still 128 

visible. For each identified feature, we created a point in the location of the RTS within the visible outlines of the RTS. 129 

Each digitized point represented one feature that would be classified (see Sect. 2.2). Due to the complex nature of coastal RTSs 130 

sometimes stretching along coastal segments (Fig. 4d), we decided to identify each elongated contour with visible semicircles 131 

embedded inland as one feature. Such contours were often separated from each other by little streams or watercourses. This 132 

approach allowed us to utilize a single technique for all coastal RTSs, regardless of their size and shape. 133 

The RTS points underwent two visual corrections by the first author. To differentiate the process of coastal erosion from 134 

thermodenudation (Günther et al., 2012; Nesterova et al., 2024) and thereby distinguish other coastal landforms from RTSs, a 135 

special correction was applied to all coastal RTSs and thermoterrace RTSs (see Sect. 2.2). This involved verifying the headwall 136 

retreat of the RTS outline using the ESRI Wayback Machine - a digital archive of the World Imagery basemap of different 137 

versions providing multi-temporal imagery (ESRI Wayback Imagery, 2024). The same verification procedure was applied for 138 

the identification of RTS in the southernmost part of our West Siberian study area, where no reliable data on massive ground 139 

ice distribution is available and thus permafrost landforms can have different origins. The literature specifies the limits of 140 

massive ground ice extent in the north of West Siberia only very approximately (Baulin and Danilova, 1998). 141 

2.2 Classification 142 

We classified each RTS point based on terrain position, morphology, spatial organization, and concurrent cryogenic processes 143 

(Fig. 5). The four main criteria had a total of 15 parameters. 144 

 145 

Figure 5 RTS classification scheme with four main criteria (shown as grey blocks) and 15 variables. 146 
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The terrain position of an RTS is defined based on the location of the object to either some hydrological feature (sea coast, 147 

river bank, lakeshore, and gully) or just slope when there was no visible hydrological feature. The location lake was selected 148 

for RTSs even on the former shores of drained lakes. 149 

We further defined three types of RTS morphologies: thermocirque, thermoterrace, or a combination of these two (Nesterova 150 

et al., 2024). Thermocirque generally presents a horseshoe-like RTS shape (Fig. 6a), while thermoterrace is applied to an 151 

elongated RTS with mostly straight headwall outlines parallel to a coastline or riverbank (Fig. 6b). The combination of these 152 

two morphologies sometimes occurs when the elongated RTS landform also contains circular isometric curves of headwall 153 

outlines (Fig. 6c). It is usually formed when a thermocirque merges with a thermoterrace or when multiple thermocirques 154 

merge in one elongated landform. The complicated shapes of these combined RTS features make it highly challenging to 155 

distinguish between individual elongated and horseshoe-like RTSs (Fig. 6c). Our decision tree to define the morphology of 156 

RTS is shown in Supplement. 157 

 158 

Figure 6 Examples of the three main RTS morphologies mapped in West Siberia: (a) Two thermocirques (yellow dots); (b) A single 159 
large thermoterrace (yellow dot); (c) A combined RTS morphology of merged thermocirques or merged thermocirque and a 160 
thermoterrace (yellow dot). ESRI basemap used has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, 161 
AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 162 

Due to the polycyclic nature of RTS development, these landforms can exhibit a very complex spatial organization of nested 163 

and amalgamated RTSs (Nesterova et al., 2024). We identified two types of RTS spatial organization: single landforms and 164 

complex landforms. RTS can be classified as a single landform when its outline is distinct and clearly defined and there is no 165 

more than one actively thawing zone within this outline (Fig. 7a). RTS can be classified as a complex landform when its 166 

boundary is difficult to define and/or there are two or more actively thawing zones (Fig. 7b). All the RTSs with combined 167 

morphologies were marked as complex landforms.  168 

The influence of concurrent (happening in parallel to RTS development) processes on RTS development is described in 169 

Nesterova et al. (2024). For each mapped RTS, we noted the possible presence of 5 concurrent processes: lateral thermo-170 

erosion, coastal thermo-erosion, ice wedge erosion, nivation, and thermokarst subsidence. Lateral thermo-erosion was 171 

identified by the rugged outline of the RTS and visible traces of erosive channels (Fig. 8a). The Coastal thermo-erosion 172 

classifier includes not only the sea cost erosion but also river and lakeshore erosion. It was determined by a sharp dark outline 173 

of the RTS base along the coastline of a waterbody and the absence of sediment accumulation in the water (Fig. 8a). We have 174 
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noted ice wedge erosion when an RTS headwall had a jagged outline resembling the adjacent polygonal surface of undisturbed 175 

tundra (Fig. 8b). Nivation was detected as white patches of snowpacks that stayed over the summer within RTS (Fig. 8a). 176 

Thermokarst subsidence appears as small thermokarst ponds filled with water. It is noticeable as black patches within the RTS 177 

outline (Fig. 8b). 178 

 179 

Figure 7 Examples of the different spatial organization of RTSs: (a) Single RTS landform with a distinct outline (yellow dot); (b) 180 
Complex RTS landform (yellow dot) with multiple nested active (1) and stabilized (2) RTSs within one contour. ESRI basemap used 181 
has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, 182 
swisstopo, and the GIS User Community. 183 

 184 

Figure 8 Examples of RTS with concurrent processes: (a) Stabilized RTS (yellow dot) at a riverbank. The white arrow (1) points to 185 
the clear dark boundary between the RTS and the waterbody, which together with the absence of sediment accumulation, indicates 186 
ongoing coastal thermo-erosion at the slump base. The purple arrows (2) point to the rugged outline of RTS and traces of erosive 187 
channels, indicating lateral thermo-erosion. The green arrow (3) points at the white patch of the remaining snowpack (nivation). (b) 188 
Stabilized RTS (yellow dot) at a lakeshore. The light blue arrows (4) point to the polygonal surface around the RTS and (5) the 189 
jagged outline of the headwall suggesting ice-wedge degradation. The orange arrows (6) point to the small black patches of 190 
thermokarst ponds within the RTS. ESRI basemap used has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, 191 
USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 192 
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 193 

2.3 Accuracy assessment 194 

2.3.RTS location accuracy  195 

We compared the RTS point locations of our dataset with two sets of ground truth field data to estimate the accuracy of our 196 

mapped RTS point locations. 197 

The first set of RTS locations was collected for the Vaskiny Dachi Research Station in Central Yamal by Khomutov et al. 198 

(2024) and included 158 points. The authors used satellite images of QuickBird-2 for 2010, GeoEye-1 and WorldView-2 for 199 

2013, and WorldView-2, 3 for 2018, as well as the results of long-term field observation to map RTSs. Since the RTS mapping 200 

protocols can significantly affect the results (Nitze et al., 2024), we have adjusted these ground truth points to align with our 201 

mapping protocol in which one point stands for one RTS landform. When comparing our points to the ground truth collected, 202 

we observed inconsistencies in mapping RTS points. For example, while the ground truth dataset might contain two or three 203 

points for an RTS landform, our approach would place only one. To account for these differences, we recalibrated the dataset 204 

and calculated accuracy statistics for both the original (unadjusted) and adjusted RTS points (Table 1). 205 

Two RTS surveys were conducted during helicopter flights in 2020 and 2023. We manually identified the exact locations of 206 

aerial photos and created another RTS dataset. We then used it to perform an accuracy analysis in the central Gydan Peninsula 207 

(Fig 9b, c). These points were also adjusted to our RTS mapping protocol, and the accuracy statistics were calculated for both 208 

versions (Table 1). The performance of our dataset was evaluated using precision, recall, and F1-score, which integrates both 209 

measures. In this context, precision refers specifically to the metric used in the F1-score calculation and should not be confused 210 

with measurement precision, as no measurements were performed. Precision is calculated as the proportion of correctly 211 

identified (true positive) RTS points when compared to the ground truth RTS points, among all mapped RTS points in the 212 

dataset. Recall represents the proportion of correctly identified RTS points relative to the total number of RTS points in the 213 

ground truth dataset. The F1-score is the harmonic mean of precision and recall, providing a balanced evaluation of both false 214 

positives and false negatives. 215 
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 216 

Figure 9 Field validation: (a) Locations of the Vaskiny Dachi research station with field survey area on Yamal Peninsula and 217 
helicopter survey area on central Gydan Peninsula, basemap: ESRI; (b) Photo of RTSs from the helicopter taken by Artem 218 
Khomutov, July 2023; (c) the same RTSs marked with the yellow point on the ESRI basemap, WorldView-2 24 July 2019. ESRI 219 
basemap used in (a) and (c) has the following credits: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, 220 
Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 221 
 222 
Table 1 Number of RTSs used for the location accuracy analysis. The unadjusted number of RTSs represents the initial amount of 223 

RTSs in the ground truth datasets. The adjusted number of RTSs represents the amount of RTSs in the ground truth datasets 224 

adapted to the RTS mapping protocol applied for manual collection. 225 

Vaskiny Dachi Research Station 

Survey 2024 

Gydan Helicopter Survey 2020 Gydan Helicopter Survey 2023 

unadjusted adjusted unadjusted adjusted unadjusted adjusted 

158 132 60 39 12 12 

 226 

2.3.2 Classification accuracy 227 

To assess the subjectivity of the classification, we conducted an experiment in which five co-authors of this study were tasked 228 

with classifying a subsample of 120 randomly stratified RTS points that equally covered all three types of morphology. The 229 

decision-tree schemes and the collection of screenshots of different RTSs were used as supportive materials (see Supplement). 230 
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We calculated the proportion of the same classifications by 5 co-authors compared to the original dataset and Jensen-Shannon 231 

distances explaining the deviation of classifications. 232 

3. Results 233 

3.1 RTS points 234 

The dataset is presented in a GeoPackage vector file of point geometry with 6168 RTS point locations. Mapped RTSs were 235 

distributed unevenly, covering Tazovsky Peninsula where no RTS were found, the Yamal Peninsula except its northern part, 236 

and covering the Gydan Peninsula except its southern part (Fig.10a). RTSs were significantly clustered according to Ripley’s 237 

K function on a wide range of distances (p-value=0.001). Ripley’s K function determines whether spatial points have a random, 238 

dispersed, or cluster distribution over a certain distance or scale (Dixon, 2001). The majority of areas of both peninsulas had 239 

less than 20 RTSs per 30*30 km hexagon grid cell, indicating distinct hotspots of RTS occurrence with more than 100 RTSs 240 

per grid cell. The main areas with high RTS density were the western part of central Yamal and the area between the southern-241 

western and north-eastern parts of central Gydan. On Gydan, they clustered along a distinct linear feature on its southern edge, 242 

south of which RTSs abruptly become almost absent (Fig.10b). 243 

 244 

Figure 10 Distribution of all mapped RTSs: (a) Manually mapped RTSs (purple dots); (b) Density map of RTSs per 30 × 30 km 245 
hexagonal grid cell. Projection: WGS 84 UTM Zone 43. Basemap: OSM Standard.  246 
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3.2 Terrain position 247 

More than 75% of all RTSs were found at lakeshores (Fig.11a). The high-density areas of lakeshore RTSs correspond to RTS 248 

occurrence hotspots in the western part of central Yamal and the area between the south-western and north-eastern parts of 249 

central Gydan (Fig.11c).  250 

The density of RTSs at the sea coasts was mostly less than 10 RTSs per grid cell. The highest density of coastal RTSs was 251 

found along the northern shores of Yuribei Bay in south-western Yamal (Fig.11b). For RTSs along river banks, gullies, and 252 

slopes, the predominating values of density were less than 10 RTSs per grid cell, not showing any spatial clustering (Appendix 253 

A).  254 

 255 

Figure 11 Distribution of all mapped RTSs: (a) Manually mapped RTSs classified by location; Density maps of RTSs per 30 × 30 256 
km hexagonal grid cell located along the (b) seacoast and (c) lakeshores. Projection: WGS 84 UTM Zone 43. Basemap: OSM 257 
Standard.  258 
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 259 

3.3 Morphology 260 

The majority (72%) of RTSs were classified as thermocirques, one-quarter of all RTSs are combined landforms, and less than 261 

3% were classified as thermoterraces (Fig.12a). The majority of RTSs in all categories have a spatial density of less than 15 262 

RTSs per grid cell. 263 

 264 

Figure 12 Distribution of all mapped RTSs: (a) Manually mapped RTSs classified by morphology; Density maps of RTSs per 30 × 265 
30 km hexagonal grid cell classified as (b) thermocirque, (c) thermoterrace, and (d) a combination of both. Projection: WGS 84 266 
UTM Zone 43. Basemap: OSM Standard.  267 
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Thermocirques were highly concentrated in hotspot areas of general RTS abundance (Fig. 10b). Combination landforms 268 

followed the high RTS abundance pattern mostly in the Gydan Peninsula but less so on the Yamal Peninsula. In contrast, 269 

thermoterraces lacked distinct high-density hotspots. 270 

3.4 Spatial organization 271 

More than half of all RTSs (64%) were classified as complex landforms and slightly more than one-third (36%) as single 272 

landforms (Fig. 13). Both complex and single landforms followed the general spatial distribution patterns, with high-density 273 

areas being located in the western part of the central Yamal Peninsula and the southern-western and north-eastern parts of the 274 

central Gydan Peninsula. The most frequent density range for both classes was less than 10 RTSs per grid cell. 275 

 276 

Figure 13 Distribution of all mapped RTSs: (a) Manually mapped RTSs classified by spatial organization; Density maps of RTS per 277 
30 × 30 km hexagonal grid cell classified by spatial organization as (b) single or (c) complex landforms. Projection: WGS 84 UTM 278 
Zone 43. Basemap: OSM Standard.  279 

3.5 Concurrent processes 280 

More than half (53.8%) of all RTSs were found to have at least one concurrent process detected, more than a third (33.4%) of 281 

all RTSs showed only one process detected, while much fewer RTSs demonstrated two or more processes detected at the same 282 

time (Fig. 14a). Lateral thermo-erosion and thermokarst were two very abundant RTS-concurrent processes (Fig. 14b). For the 283 
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cases where only one process was detected per RTS, there was a predominance of thermokarst (38%) followed by lateral 284 

thermo-erosion processes (30%) (Fig. 14c).  285 

Using chord diagrams (Fig. 14d, e, f) allowed a depiction of the co-occurrence of concurrent processes estimated for the cases 286 

when two, three, or four processes were detected for RTS. In general, the co-occurrence of the concurrent processes shows 287 

different results depending on the cases of the amount of the processes detected. There was a clear trend of the co-occurrence 288 

of nivation and lateral thermo-erosion among all 3 cases (Fig. 14d, e, f). The co-occurrence of lateral thermo-erosion and ice-289 

wedge erosion gradually increased with more processes detected. The co-occurrence of the nivation and the coastal thermo-290 

erosion, when only 2 processes are detected, was relatively low but increased significantly with more processes detected. The 291 

presence of thermokarst processes, in general, decreased with more processes detected. 292 

 293 

 294 

Figure 14 Results of concurrent processes detected for each RTS: (a) Pie-chart of the number of concurrent processes detected for 295 
each RTS; (b) Histogram representing the total count of all concurrent processes identified in mapped RTS; (c) Histogram 296 
representing the distribution of concurrent processes when only 1 process per RTS was detected. Chord diagrams representing the 297 
occurrence of concurrent processes in the case when (d) two concurrent processes were detected, (e) three concurrent processes were 298 
detected, and (f) four concurrent processes were detected. The size of the outer frame corresponds to the count of each concurrent 299 
process. The lines connecting color-coded concurrent processes stand for the co-occurrence: the thicker the line, the higher the co-300 
occurrence. 301 
 302 
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 303 

Figure 15 Density maps of RTSs per 30 × 30 km hexagonal grid cell classified by the presence of concurrent process: (a) Lateral 304 
thermo-erosion; (b) Coastal thermo-erosion; (c) Ice wedge erosion; (d) Nivation; (e) Thermokarst subsidence. Projection: WGS 84 305 
UTM Zone 43. Basemap: OSM Standard.  306 
 307 

RTSs attributed with concurrent processes exhibit low densities, with fewer than 5 RTSs per grid cell, regardless of the type 308 

of concurrent process (Fig. 15). RTSs with lateral thermo-erosion detected had higher densities in the western part of the 309 

central Yamal Peninsula and the central and northern Gydan Peninsula, with a hotspot in central Gydan Peninsula (Fig. 15a). 310 

RTSs with concurrent coastal thermo-erosion had higher densities in the western part of central Yamal and the north-western 311 

Gydan peninsulas, with three hotspots located at south-western part of central Yamal Peninsula, and northern and north-312 

western Gydan Peninsula. (Fig. 15b). In general, the spatial distribution of RTSs with coastal thermo-erosion did not follow 313 

the main spatial patterns detected in the Fig. 10b. RTSs with ice wedge erosion had higher densities on the northern Gydan 314 

Peninsula and rather lower densities on the Yamal Peninsula, with one hotspot located on central Yamal Peninsula (Fig. 15c). 315 
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The spatial distribution of RTSs with concurrent ice wedge erosion also did not follow the main spatial patterns detected in 316 

Fig. 10b. RTSs with nivation had higher densities in central and northern Gydan Peninsula (more than 30 RTSs per grid cell) 317 

and rather lower (less than 15 RTSs per grid cell) densities on Yamal Peninsula (Fig. 15d). There were four hotspots: one on 318 

central Yamal Peninsula and three on central Gydan Peninsula. The spatial distribution of RTSs with nivation also did not 319 

follow the main spatial patterns detected in Fig. 10b. RTSs with concurrent thermokarst did follow the main spatial patterns 320 

detected in Fig. 10b and thus had higher densities and some hotspots in the western part of central Yamal Peninsula and the 321 

area between the southern-western and north-eastern parts of central Gydan Peninsula (Fig. 15e). 322 

4. Discussion  323 

4.1 Data limitations 324 

The manual collection of RTS points using the ESRI satellite basemap was effective across a large region but also had several 325 

limitations. One challenge was the resolution and zoom limitations, as the minimum detectable landform width was 20 meters, 326 

potentially excluding smaller features. Seasonal variability of the images in the ESRI satellite basemap further complicated 327 

the process, with snowpacks identifiable only in summer images, excluding all autumn (September) imagery. On the other 328 

hand, more extensive snow cover on certain images obscured some areas, hindering the accurate inventory of RTS and their 329 

attributes in these regions. Additionally, visual artifacts (blur, glare, clouds, contrails) in some imagery led to the omission of 330 

some cells, though this accounted for less than 0.5% of the total dataset. 331 

Temporal constraints posed another issue, as working with a single satellite image captured at a specific time could mean that 332 

some features were not visible or detectable under those conditions, leading to potential underrepresentation of RTS features. 333 

The rapid evolution of RTS added difficulty, with two RTSs of a single morphology potentially merging into a complex 334 

morphology, creating challenges in morphology classification. Similar challenges were reported in the literature (Huang et al., 335 

2020; Rodenhizer et al., 2024). Additionally, updates to the ESRI satellite basemap during the mapping effort sometimes 336 

introduced inconsistencies across different stages of our workflow, e.g. between the initial mapping of RTS as points, the 337 

subsequent addition of attributes, and the later correction loop (Fig. 2). To alleviate some of these challenges, we effectively 338 

used the ESRI Wayback time series to verify uncertain landforms or attributes.  339 

Visual identification also had several challenges. Stabilized RTSs were difficult to recognize. Challenges were also faced when 340 

classifying partially stabilized RTS. The limitations concerning distinguishing slowly stabilizing slumps from stabilized 341 

slumps using optical data were also reported in the literature (Bernhard et al., 2020). The sediment accumulation as a secondary 342 

indicator for coastal thermo-erosion was found debatable due to its temporary nature. Some landforms, such as curved 343 

riverbanks, wave-cut lakeshores, active layer detachments (ALDs), and first-stage thermokarst mound (baydzherakh) 344 

development, could have been easily misclassified as RTS, leading to false positives.  345 
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Subjectivity was another significant limitation. Atypical for this area, Yedoma RTSs in the northern Gydan region differed 346 

significantly in appearance from other RTSs. Yedoma RTS's visual characteristics were not properly addressed in the initial 347 

visual identification protocol, leading to potential misidentifications.  348 

4.2 Accuracy 349 

Human subjectivity, even if mapping is conducted by experienced researchers, can influence the results and contribute to 350 

dataset uncertainties. For RTS mapping, this has been demonstrated before in a mapping exercise with multiple operators with 351 

varying degrees of experience (Nitze et al., 2024). Our subjectivity assessment using a subset of 120 RTS samples revealed 352 

that 3–16.6% were classified as non-RTS, with an average false positive rate of approximately 8.5% and a median of 4.1%. 353 

Consequently, the accuracy of our dataset based on this experiment averages around 0.91.  354 

The degree of classification similarity among the five co-authors, compared to the original dataset, exhibited a clear trend 355 

influenced by spatial organization, morphology, and two concurrent processes—coastal thermo-erosion and lateral thermo-356 

erosion—which were generally the most subjective. Spatial organization emerged as the most subjective parameter, with 357 

classifications showing the alignment in only half of the 120 sample points on average (Fig. 16a). 358 

To further quantify classification variability, we calculated Jensen-Shannon distances (Fig. 16b), a metric for measuring 359 

similarity between probability distributions. This value ranges from 0.0, indicating identical distributions, to 1.0, representing 360 

completely distinct distributions. The results confirmed the overall trend of morphology, coastal thermo-erosion, and lateral 361 

thermo-erosion being the most subjective parameters, except for spatial organization, which showed minor differences in 362 

probability distributions. Coastal thermo-erosion exhibited the highest variation in classification probability distributions, 363 

likely due to two distinct hotspots observed in the heatmap. 364 

Overall, the probability distributions of most classified parameters were either highly or moderately similar to those in the 365 

original dataset. This suggests a generally consistent perception of RTS classification among the co-authors in the experiment. 366 

RTS location accuracy was estimated for the area around the Vaskiny Dachi research station in central Yamal and central 367 

Gydan Peninsulas, with helicopter surveys conducted in 2020 and 2023 (see Appendix B). RTS location accuracy assessments 368 

for all areas revealed very high precision compared to the ground truth, confirming the reliability of the dataset (Table 2). A 369 

relatively low recall, even after applying mapping style adjustments, indicates an approximate 50% underestimation of small 370 

RTSs in the study area (Table 2) primarily due to the reasons described in the Data Limitations section (see Sect. 4.1). Please, 371 

note that in this context, precision specifically refers to the metric used in the F1-score calculation and should not be mistaken 372 

for measurement precision, as no actual measurements were conducted. 373 
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 374 

Figure 16 Classification subjectivity assessment: (a) Heatmap of the proportion of similar classifications by five co-authors compared 375 
to the classification in the dataset.; (b) Heatmap of Jensen-Shannon distances explaining deviation of classifications by five co-376 
authors compared to the classification in the dataset. 377 
 378 
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Table 2 Average results of RTS location accuracy assessment for all three sets of ground truth field data: central Yamal and central 379 

Gydan (2020 and 2023). The adjusted value represents the accuracy measure calculated by comparing our dataset to the ground 380 

truth datasets adapted to the RTS mapping protocol applied for manual collection. The unadjusted value represents the accuracy 381 

measure calculated by comparing our dataset to the original ground truth datasets.  382 

Average results for all three sets of ground truth field data 

 Adjusted to the mapping style Unadjusted to the mapping style 

Precision 0.96 0.96 

Recall 0.44 0.38 

F1 score 0.60 0.54 

 383 

The relatively low F1 scores observed in our study can be attributed primarily to high underestimation (i.e., low recall) when 384 

compared to field data. Manual mapping of RTS using remote sensing data is often regarded as the most accurate approach 385 

(Swanson and Nolan, 2018; Segal et al., 2016a, b; Young et al., 2022; Luo et al., 2022). Efforts to enhance accuracy, 386 

particularly in terms of precision, have been made by incorporating multi-year datasets (Huang et al., 2021) and conducting 387 

multiple rounds of expert review (Segal et al., 2016b; Young et al., 2022). To ensure the reliability of manual mapping, Young 388 

et al. (2022) employed aerial field survey data for visual validation; however, their study did not report the initial recall of 389 

manual RTS mapping against field observations. 390 

To the best of our knowledge, there are no existing studies that quantitatively assess the recall uncertainty of RTS manual 391 

mapping using remote sensing compared to field data, particularly over large spatial extents. Lewkowicz and Way (2019) 392 

attempted to estimate recall accuracy for manual RTS mapping in Banks Island, Canada (70000 km2), but their evaluation was 393 

based on a comparison with another remote sensing dataset rather than ground-based field observations. This limitation is 394 

largely due to the challenges associated with field data collection in remote study areas. Moreover, since field data provides 395 

only a single snapshot in time, some RTS classified as false positives based on remote sensing data may be true RTS that were 396 

simply not captured in the field dataset. 397 

Despite these uncertainties, manually mapped RTS datasets serve as validation sources for automated deep-learning-based 398 

mapping algorithms (Nitze et al., 2021; Yang et al., 2023; Xia et al., 2022; Huang et al., 2021). Notably, relatively high F1 399 

scores (F1 > ~0.7) for automated RTS mapping have been reported, but these assessments were primarily conducted against 400 

internal training datasets covering limited spatial extents and derived from manual mapping rather than field data (Huang et 401 

al., 2020; Nitze et al., 2021; Witharana et al., 2022; Yang et al., 2023).  402 
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Our findings demonstrate that manual mapping using remote sensing data cannot be considered a definitive ground truth and 403 

is associated with a certain degree of inaccuracy, particularly concerning recall. 404 

Our accuracy assessment highlights the overall subjectivity in defining RTS morphology and spatial organization. These 405 

parameters critically influence what is visually identified as RTS in satellite imagery. This subjectivity aligns with previous 406 

RTS mapping experiments, where "mapping style" and the scientific background of domain experts were found to impact RTS 407 

delineation (Nitze et al., 2024). Our results demonstrate that, despite standardized instructions, both morphology and spatial 408 

organization remain the most subjective parameters in RTS classification. 409 

4.3 Data applicability 410 

The collected data on RTSs holds significant potential for future applications and research across various disciplines. It can 411 

serve as a foundation for a more detailed characterization of the permafrost region. The spatial distribution and clustering of 412 

RTSs in West Siberia, combined with cryostratigraphic and geomorphological analyses, can help unravel driving processes 413 

and improve our understanding of these dynamic landforms. 414 

This dataset can also guide further research efforts, such as field surveys aimed at monitoring cryogenic processes as well as 415 

studies to uncover the ground ice origin. In addition, it provides a valuable reference for ground-truthing in machine learning 416 

applications, enabling more accurate automated remote sensing classifications and predictive modeling. 417 

The dataset is particularly relevant to ecologists, biogeochemists, geomorphologists, climatologists, permafrost scientists, 418 

hazard researchers, and remote sensing specialists. This data can also be useful in the context of managing permafrost-related 419 

risks and planning sustainable development in vulnerable regions. 420 

5. Data availability 421 

The dataset is available at Nesterova et al., 2025 (https://doi.pangaea.de/10.1594/PANGAEA.974406).     422 

6. Conclusions 423 

In this study, we present the first large-scale manual RTS mapping effort with accuracy assessments based on field data. We 424 

present a comprehensive, manually mapped dataset of 6168 current retrogressive thaw slumps (RTS) for a large region in the 425 

West Siberian Arctic. Each RTS in the dataset was classified according to its morphology, spatial organization, terrain position, 426 

and concurrent permafrost relief-forming processes. Accuracy assessments with independent field data and expert knowledge 427 

indicate a high accuracy of the dataset while also highlighting some subjectivity in the classifications. Due to resolution 428 

limitations in the satellite image basemaps used for mapping, the dataset may underestimate the occurrence of small RTS in 429 

the region, resulting in an overall conservative estimate. Despite these constraints, our new RTS inventory offers valuable 430 
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insights for a wide range of research fields aiming at further investigations of RTS formation and dynamics, permafrost-climate 431 

interactions, permafrost-ecosystem feedbacks, and ground ice distribution in West Siberia. 432 

Appendices 433 

Appendix A 434 

 435 

Figure A1. Density maps of RTS points counted per 30 × 30 km hexagonal grid cell located at the (a)river, (b) gully, and (c) slope. 436 
Projection: WGS 84 UTM Zone 43. Basemap: OSM Standard.  437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
 446 
 447 
 448 
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Appendix B 449 

Table B Results of RTS location accuracy assessment for all three sets of ground truth field data: central Yamal Vaskiny Dachi 450 

research station and central Gydan Helicopter Survey (2020 and 2023). The adjusted value represents the accuracy measure 451 

calculated by comparing our dataset to the ground truth datasets adapted to the RTS mapping protocol applied for manual 452 

collection. The unadjusted value represents the accuracy measure calculated by comparing our dataset to the original ground truth 453 

datasets.  454 

Vaskiny Dachi research station, central Yamal 

 Adjusted to the mapping 

style 

Unadjusted to the mapping style 

Precision 0.88 0.88 

Recall 0.44 0.37 

F-1 score 0.59 0.52 

Gydan Helicopter Survey 2020 

 Adjusted to the mapping 

style 

Unadjusted to the mapping style 

Precision 1 1 

Recall 0.3 0.2 

F-1 score 0.46 0.33 

 Gydan Helicopter Survey 2023 

Precision 1 

Recall 0.58 

F-1 score 0.73 

  455 
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